产品列表
锅炉除氧器系列
解析除氧器|全自动解析除氧器
真空除氧器|常温水除氧器
双级真空除氧器|无头除氧器
真空电化学除氧器|全自动除氧器
旋膜式除氧器|热力除氧器
三位一体真空电化学除氧器
热力除氧器
旋膜式除氧器
真空除氧器
大气式除氧器
低位旋膜式除氧器
锅炉除氧器
板框式滤油机系列
高精度滤油机|液压油高精度滤油机
透平油真空滤油机|绝缘油真空滤油机
润滑油真空滤油机|高效真空滤油机
板框式加压滤油机|板框式压力滤油机
真空滤油机|双级真空滤油机
加药装置系列
锅炉加氨装置|智能加氨装置
循环水加药装置|锅炉加药装置
磷酸盐加药装置|全自动加药装置
胶球清洗系列
旋转式二次滤网|电动二次滤网
循环水过滤器|自动反冲洗过滤器
胶球清洗装置|凝汽器清洗
中空调胶球清洗装置(中央空调蒸发器)
胶球清洗循环水二次滤网
冷凝器自动在线清洗装置
全自动胶球清洗装置
胶球清洗装置胶球泵
胶球清洗装置装球室
胶球清洗装置收球网
凝汽器胶球清洗装置
锅炉消音器系列
风机消音器|罗茨风机消声器
柴油发电机排气消音器|柴油机消声器
小孔型消音器
锅炉吹管消声器
真空泵消音器
抗喷阻式消声器
锅炉排气消音器
锅炉管道消音器
锅炉安全阀消音器
蒸汽消音器
锅炉消音器
工业滤水器系列
自动反冲洗滤水器|自动过滤器
精密过滤器|精密激光打孔过滤器
工业滤水器|电动工业水过滤器
快开盲板过滤器|快开蓝式过滤器
循环水过滤器|全自动排污过滤器
手动滤水器
电动滤水器
全自动滤水器
热网除污器
管道排污滤水器
工业滤水器
旋转反冲洗滤水器
其它系列
汽液两相流疏水器
取样冷却器(汽、水)
管式冷油器|汽轮机冷油器
飞灰等速取样器|煤粉自动取样器
汽液两相流自动调节液位装置
热网除污器|管道除污器

         
旋膜式除氧器
 
热力除氧器 
低位旋膜式除氧器

高压除氧器 、
热力旋膜式除氧器
锅炉除氧器
 旋膜式除氧器除氧头
 热力式除氧器
 真空除氧器
      
 锅炉消音器|锅炉消声器结构特点    
 锅炉消音器|锅炉消声器工作原理
 蒸汽消音器|蒸汽消声器厂家
 蒸汽消音器|蒸汽消声器安装用途
 安全阀消音器|安全阀消声器结构特点
 风机消音器|风机消声器厂家
 柴油机消音器|柴油机消声器工作原理
 真空泵消音器|真空泵消声器安装用途
 真空泵消音器|真空泵消声器压力温度材质
 管道消音器|管道消声器结构特点
 小孔消音器|小孔消声器厂家
 排气消音器|排气消声器安装用途
 放散消音器|放散消声器结构特点
 吹管消音器|吹管消声器工作原理
 旋膜式除氧器厂家安装用途
 真空除氧器结构特点
 热力除氧器工作原理
 三位一体真空电化学除氧器工作原理
 解析除氧器厂家安装用途
 全自动滤水器工作原理
 电动滤水器厂家安装用途
 手动滤水器厂家安装用途
 工业滤水器厂家安装用途
 工业滤水器结构特点
 反冲洗滤水器工作原理
 二次滤网结构特点
 全自动除污器厂家安装用途
 电动排污过滤器厂家安装用途
 胶球清洗装置结构特点
 凝汽器胶球清洗装置厂家安装用途
 冷凝器自动在线清洗装置工作原理
 海绵胶球厂家使用用途
 剥皮胶球使用特点
 金刚砂胶球清洗原理
 循环水胶球泵结构特点
 取样冷却器厂家安装用途
 煤粉取样器结构特点
 煤粉取样器工作原理
 飞灰取样器结构特点
 列管式冷油器工作原理
 射水抽气器厂家安装用途
 汽液两相流疏水器工作原理

新闻动态 >>
真空除氧器液位控制原理、常见故障分析与处理?

真空除氧器液位控制原理、常见故障分析与处理? 

      真空除氧器液位控制原理、常见故障分析与处理?介绍了真空除氧器液位控制的原理,总结了真空除氧器液位异常时常见故障及操纵员应采取的处理措施;列举一些在真实机组上出现的事件,共同学习事件处理的经验反馈。
1系统描述
     凝结水系统提供加热后的凝结水至真空除氧器,作为给水系统的供水来源。系统从凝汽器热阱的出口开始,凝结水泵从凝汽器热阱吸水,通过轴封冷却器至一列真空除氧器液位控制阀,然后再通过两列低压给水加热器将凝结水送至真空除氧器真空除氧器液位控制系统的目的是保持真空除氧器液位稳定。
2仪表与控制
2.1真空除氧器主液位控制
2.1.1真空除氧器主液位控制设备控制手柄的介绍
     真空除氧器液位控制系统的目的是保持真空除氧器液位稳定。系统包括3个液位控制器(每一个液位控制器都有各自的液位变送器监测真空除氧器的液位)和3个容量为50%的液位控制阀。2个控制手柄64321-HS4410A和64321-HS4410C位于主控室的盘台66110-PL10上,用来选择真空除氧器液位控制器和真空除氧器液位控制阀。
     控制手柄64321-HS4410A有3个位置“LT4410A、LT4410B、LT4410C”,用来选择3个液位控制器的主、从位置。当选定一个位置时,2个控制器投入运行:一个控制器在AUTO位置,一个控制器在STANDBY位置。具体的位置选择如表1所示。
表1
HS4410A位置 液位控制器运行模式
LC4410A LC4410B LC4410C
LT4410A AUTO STANDBY 
LT4410B  AUTO STANDBY
LT4410C STANDBY  AUTO
     在AUTO位置的液位控制器用于调节2个由控制手柄64321-HS4410C选定在AUTO位置的液位控制阀,在STANDBY位置的液位控制器控制剩下的一个在STANDBY位置的液位控制阀。STANDBY位置的液位控制阀在真空除氧器低液位时投入运行。
     控制手柄64321-HS4410C有3个位置“LCV4207A、B;LCV4207B、C;LCV4207C、A”,用来选择将AUTO/STANDBY液位控制器的控制信号送至相应的液位控制阀。每一个液位控制阀都有自身的控制手柄,分别为64321-HS4207A、HS4207B、HS4207C,每个控制手柄有3个位置:CLOSE-STABDBY-AUTO,一旦64321-HS4410C选定了一个位置后,3个液位控制阀中的两个阀的控制手柄选定在AUTO位置,三个控制阀的控制手柄选定在STANDBY位置。具体的位置选择如表2所示。
表2
HS4410C位置 液位控制阀手柄位置
HS4207A HS4207B HS4207C
LCV4207A﹑B AUTO AUTO STANDBY
LCV4207B﹑C STANDBY AUTO AUTO
LCV4207C﹑A AUTO STANDBY AUTO
2.1.2真空除氧器主液位控制逻辑
     3个液位变送器LT4410A﹑LT4410B和LT4410C分别将真空除氧器液位信号送至3个液位控制器LC4410A﹑LC4410B和LC4410C,每一个控制器可以调节两个50%容量的液位控制阀,以保持真空除氧器液位的稳定。
     液位控制的过程为:先由HS4410A选择液位控制器,然后由HS4410C选择液位控制阀,后由每一个液位控制阀各自的手柄HS4207A﹑HS4207B和HS4207C来选择阀的控制模式。
     例如,如果HS4207A和HS4207B放在AUTO位置,它们各自的电磁阀SV4207A和SV4207B得电,允许从控制器LC4410A来的控制信号调节LCV4207A和LCV4207B;HS4207C放在STANDBY位置,SV4207C保持在失电状态,LCV4207C关闭。这样在控制器的运行范围内,控制阀LCV4207A﹑LCV4207B调节真空除氧器的液位,使液位保持稳定。如果液位开关LS4413#1探测到真空除氧器低液位时,SV4207C得电,允许从LC4410B来的控制信号来调节备用的真空除氧器液位控制阀LCV4207C;备用的真空除氧器液位阀一直开启,直至真空除氧器高液位时关闭,此高液位由LS4412#1测得。LS4412#1和LS4412#2测得真空除氧器高液位时,3个真空除氧器液位控制阀的电磁阀均失电,3个真空除氧器液位控制阀关闭。水位降至高液位以下,而又高于低液位时,AUTO位的真空除氧器液位控制阀又恢复调节,而STANDBY位置的真空除氧器液位控制阀保持关闭。
2.2真空除氧器液位控制异常的定位及处理
     真空除氧器液位出现异常时,主控室操纵员立即检查真空除氧器上水流量AI650、主凝结水泵出口流量AI636、主凝结水泵出口压力AI647及真空除氧器液位AI3133/AI1327/AI2516,同时检查是否有异常报警,如:主凝结水泵再循环阀开报警CI1779、真空除氧器液位高报警CI1215、真空除氧器液位高-高报警CI1222及5号高加常疏阀关闭的报警CI1762/CI1763。操纵员检查控制中的真空除氧器液位控制器LOOP1的输出,与现场阀门开度相比较,看是否一致;就地操作员立即检查主凝结水泵再循环阀门、凝汽器补排水阀和真空除氧器液位控制阀门和主凝结水泵的运行状态。
2.2.1主凝结水泵再循环阀异常开启
     现象:主凝结水泵出口流量AI636高于450kg/s,而出现主凝结水泵再循环阀开启的报警CI1779。处理措施:操纵员应关注凝结水泵出口压力AI647,如果凝结水泵出口压力AI647小于1.75MPa,应及时手动启动备用凝结水泵,确认凝汽器液位逐步恢复到3380mm。操纵员通过64321-HS4201或者64321-LC4201关闭主凝结水泵再循环阀,否则,现场操作员通过关闭4321-V4638隔离再循环阀门。确认真空除氧器液位、主凝结水泵出口压力、真空除氧器上水流量和主凝结水泵出口流量逐步恢复正常。(经验反馈事件1)
2.2.2凝汽器排水阀异常开启
     现象:凝汽器液位低于排水设定值,但是排水阀控制器64322-LC4204A/C有输出,真空除氧器上水流量低于凝结水泵出口流量,主凝结水泵出口压力下降,没有主凝结水泵再循环阀开启的报警。处理措施:操纵员通过凝汽器排水阀控制器64322-LC4204A/C关闭4322-LCV4204A/C,否则,现场操作员关闭4322-V4601/4603隔离凝汽器排水阀。确认真空除氧器液位、主凝结水泵出口压力、真空除氧器上水流量和主凝结水泵出口流量逐步恢复正常。
2.2.3真空除氧器液位控制阀故障
     现象:真空除氧器液位控制器LOOP1输出增加,而真空除氧器上水流量降低,凝结水泵出口压力增加;或现场确认真空除氧器液位控制阀开度与真空除氧器液位控制器输出不一致。处理措施:操纵员应及时根据规程,将备用真空除氧器液位控制阀投运,故障的真空除氧器液位控制阀退出运行。(经验反馈事件2)
(注:系统运行时,仪用空气丧失或控制信号丧失,真空除氧器液位控制阀将迅速关闭。)
2.2.3真空除氧器液位控制器故障
     现象:真空除氧器液位较低,真空除氧器液位控制器输出反而减少,导致真空除氧器上水流量进一步减少。处理措施:操纵员应及时将控制中真空除氧器液位控制器LOOP1置于MANUAL,手动控制真空除氧器液位控制器的输出,确认真空除氧器液位、真空除氧器上水流量、现场真空除氧器液位控制阀开度跟随真空除氧器液位控制器输出增加而增大。然后,操纵员根据规程,及时切换真空除氧器液位控制器。2.2.4真空除氧器高液位CI1215误报警
     现象:CI1215报警,而真空除氧器液位小于3900mm,真空除氧器上水流量下降。处理措施:操纵员关注真空除氧器液位、真空除氧器上水流量,将备用液位控制阀操作手柄置于“AUTO”,将备用液位控制器LOOP1输出置于MANUAL,手动控制真空除氧器液位。看真空除氧器上水流量和真空除氧器液位是否恢复正常;如果真空除氧器上水流量和真空除氧器液位不能恢复,真空除氧器上水流量为0,则手动触发1号停堆系统。(注:真空除氧器高液位开关LS4412#1和LS4412#2:LS4412#1动作时,关闭4321-LCV4207A/C和4321-LCV4224,同时出现真空除氧器高液位CI1215报警;LS4412#2动作时,关闭 4321-LCV4207B,不出现报警。)
2.2.5真空除氧器高-高液位误报警
     现象:CI1222报警,而真空除氧器液位小于4150mm,真空除氧器上水流量下降,4321-MV4107/4108/4109同时关闭。处理措施:操纵员在确认真空除氧器高-高液位误报警之后,将4321-MV4107/4108/4109的控制手柄置于“OPEN”,确认4321-MV4107/4108/4109开启后,真空除氧器液位逐渐恢复正常。
2.2.6一列低加隔离而低加旁路电动阀没有自动开启
     现象:真空除氧器上水流量下降,真空除氧器液位下降,PL10上显示一列低加隔离而低加旁路电动阀4321-MV4112没有开启。处理措施:操纵员应及时将低加旁路电动阀4321-MV4112的操作手柄置于“OPEN”,确认低加旁路电动阀4321-MV4112开启;如果低加旁路电动阀4321-MV4112没有电动开启,则让现场操作员手动摇开低加旁路电动阀4321-MV4112。
2.2.75号高加常疏阀异常关闭
     现象:5号高加壳侧液位正常,没有出现真空除氧器液位高-高液位报警,出现5号高加至真空除氧器疏水阀关闭的报警CI1762/1763,现场检查5号高加常疏阀64313-LCV4151A/C(高加5A)或64313-LCV4154A/C(高加5B)关闭,5号高加急疏阀4313-LCV4152(高加5A)或4313-LCV4153(高加5B)开启,主控室检查5号高加至真空除氧器疏水流量AI0751(高加5A)或AI0750(高加5B)显示为0。处理措施:操纵员应及时启动辅助凝结水泵,给真空除氧器上水,确认真空除氧器液位逐步恢复正常。(经验反馈事件3)
3经验反馈
     1)2003年11月26日2#机组满功率运行,主控室出现CI-1498凝泵出口流量低报警,出现CI-1779凝泵再循环阀4321-FCV4201全开报警。主控室操纵员立即确认PLANTDISPLAY上显示凝结水流量下降到630KG/S(正常为730KG/S左右),凝泵出口母管压力下降到1.6MPa后,立即启动热备用的2#主凝泵,同时派现操去就地确认再循环阀及凝泵运行状态。通知仪控紧急检查处理。9时50分,主控及就地确认凝泵运行正常后,决定隔离失效开的再循环阀4321-FCV4201,同时监视凝泵出口压力、凝汽器液位、真空除氧器液位,蒸汽发生器液位及凝泵运行状态、凝汽器补排水等参数。9时52分,隔离再循环阀64321-FCV-4201,关闭其前后手动隔离阀。10时00分,监视凝结水系统运行平稳后,关小1#CEP出口电动阀4321-MV4101到20%。10时01分,停运1#CEP,之后把1#CEP置于热备用。
     2)2005年6月6日4时50分,反应堆功率在100%FP满功率运行,发电机功率711MW。主控室操纵员发现真空除氧器液位在持续缓慢下降,已经由正常3380mm下降至3320mm。立即检查凝结水上水流量比平常略微偏低,检查PL-10上正在控制的液位控制器64321-LC4410A控制正常。现场操作员现场检查发现投运的两个液位控制阀4321-LCV4207B开度为~85%,与控制器输出要求开度基本相符,而另一阀门LCV4207C开度只有~8%,判断为LCV4207C阀门卡涩或控制异常,决定进行阀门切换。由于阀门正常切换规程中没有考虑到其中一个阀门卡在半开位置的情况,并且在切换过程中如果LCV4207C突然开大或关闭,都将有可能引起真空除氧器液位产生较大扰动而导致机组发生瞬态。主控室值长和操纵员进行了简短讨论,做好了风险分析和事故预想,针对可能出现的意外情况制定了预防措施。在切换过程中主控室操纵员和现场操作员清晰交流、通力合作、精心操作,至7时30分切换到LCV4207A/B进行控制,LCV4207C退出运行,整个切换过程对真空除氧器液位几乎没有造成波动。
     3)高加5B的正常疏水阀控制回路故障造成真空除氧器液位波动。2007年2月4日,高加5B的正常疏水控制回路故障引起正常疏水阀关闭,急疏阀开启,凝结水上水流量上升到850kg/s,不足以弥补高加5B到真空除氧器的疏水量,造成真空除氧器液位下降。同时由于凝结水泵的大能力是855kg/s,850kg/s的大上水流量限值与之已经很接近,同时在850kg/s流量时凝泵出口压力降到1.8MPa,与跳泵值1.65MPa也很接近,故启动辅助凝结水泵给真空除氧器上水,之后真空除氧器液位维持稳定。遇到此类情况要密切监视真空除氧器液位,凝泵出口压力等参数,必要时启动辅助凝结水泵给真空除氧器上水。